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We present an improved flexure linkage design for removing underconstraint in a double parallelogram 

linear flexural mechanism.  This new linkage alleviates many of the problems associated with current linkage 

design solutions such as static and dynamic performance losses and increased footprint.  The improvements of 

the new linkage design will enable wider adoption of underconstraint eliminating (UE) linkages, especially in 

the design of linear flexural bearings.  Comparisons are provided between the new linkage design and existing 

UE designs over a range of features including footprint, dynamics and kinematics.  A nested linkage design is 

shown through Finite Element Analysis (FEA) and experimental measurement to work as predicted in 

selectively eliminating the underconstrained Degree-of-Freedom (DOF) in double parallelogram linear flexure 

bearings.  The improved bearing shows an 11x gain in the resonance frequency and 134x gain in static 

stiffness of the underconstrained DOF, as designed.  Analytical expressions are presented for designers to 

calculate the linear performance of the nested underconstraint eliminator linkage (average error <5%).  The 

concept presented in this paper is applied to an analogous double-nested rotary flexure design.
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1. Introduction

The intent of this work is to improve the linkage mechanism that selectively removes the 

underconstraint in double parallelogram (DP) linear flexure bearings, without sacrificing the benefits of the 

flexural bearing.  Existing linkage design solutions [1–3] present significant tradeoffs with a range of 

disadvantages including asymmetry, static and dynamic performance losses, increased bearing footprint,

parasitic kinematic error, and design coupling, all of which limit the applicability of the underconstraint 

eliminator (UE) designs.  An improved nested linkage mechanism is presented as shown in Fig. 1 which is 

able to provide similar UE performance without many of these limitations.  This results in increases in range, 

dynamic stability, and bandwidth, in conjunction with reductions in footprint and parasitic kinematic error.  

The improved linkage design can be used in a wider range of machine designs than existing UEs, and can be 

used to replace existing UE linkages, resulting in performance increases.  Detailed models are provided for 

the small displacement behaviors as well as dynamics.

Fig. 1.  Flexure DP with nested UE linkage.  This linkage selectively removes the underconstraint 
inherent in the DP design by linking the motion of the intermediate and final stage.

Flexure bearings are often used in precision machine design [4–6] for many reasons, including i) fine 

resolution as friction is zero and hysteresis is minimal, ii) no backlash, iii) no power draw due to the passive 

nature of the components, iv) the possibility of achieving complex kinematics [7,8], v) ease of integration of 
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low-cost high performance sensing [9], vi) largely linear elastomechanics, and vii) ease of fabrication at low-

cost due to their often monolithic structure.  Flexures also have significant disadvantages, one of which is 

their limited range of motion [6].

Stacked stage designs, utilizing flexure bearings in series, are a common solution to the range 

limitation [4,6].  One such design, also called a double parallelogram flexure bearing, is shown in Fig. 2a,

which is two four-bar flexure parallelograms in series to double the range of the linear bearing.  This linear 

bearing geometry will be the focus of the paper.

Fig. 2.  a) DP linear bearing with components labeled.  Possible motions for the structure are shown 
in an equivalent linkage model in b).  The solid arrows show the nominal translational motion, with 
the kinematic errors canceled by geometry reversal.  The dotted arrows show the y-axis DOF for 
the structure observed at large displacements, which is revealed as a drop in axial stiffness.

DP flexures are used in many instances, including single or multi-axis precision positioning stages [10–

15], linear bearing elements in macroscale machines [6,16–19], or in MEMS devices [3,11,20–28].  These 

elements have received significant attention and analysis in literature, several noteworthy examples of which 

are suggested here for the reader’s further study [1,6,10,17,19,29–31].

DP flexure bearings have several advantages and disadvantages which must be considered during 

design.  The advantages of the serial stages include increased range and reduced parasitic kinematic errors.  

The arcuate parasitic kinematics errors of each of the flexure bearings can be cancelled out via geometry 

reversal to generate nearly ideal linear motion.  This cancellation requires that the intermediate stage traverse 

approximately half the final stage displacement, in phase with the final stage [1,6,10,17,19,29].  The 

cancellation effect is shown in the effective linkage model shown in Fig. 2b with the solid arrows.

There are several disadvantages to serial parallelogram stages, including dynamic and axial stiffness 

issues.  This is because the intermediate stage possesses the same translational DOF as the final stage [6].  
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The redundant DOF causes the intermediate stage to be underconstrained because it is free to move even 

when the final stage is held fixed relative to the ground [5,6,10,19,32].

The underconstraint appears as an extra, uncontrolled DOF of the bearing [6,19].  The 

underconstrained intermediate stage DOF has a relatively low resonance frequency which is generally on the 

same scale as the main translational DOF resonance of the main stage, due to the similar scale of both DOF 

stiffnesses and (typically) the masses.  This underconstrained resonance is associated with collocated 

dynamics, where the sensor and actuator are on a single rigid body, while a separate body in the system is able 

to resonate [33].  This generates stability issues, leading to difficulty in precise control, especially when the 

collocated dynamics are close to the cross-over frequency, as is typically found with the underconstrained 

intermediate stage [14,15].

The underconstraint enables a y-direction DOF for the final stage at large displacements as shown in 

Fig. 2b via the dotted arrows.  The intermediate stage slides back along its arcuate trajectory towards 

equilibrium, allowing the final stage to translate in the y-direction [1,10,31].  The motion of the intermediate 

and final stages are no longer linked by a 2:1 ratio in this vertical DOF, as they are for the main translational 

DOF.  The y-direction corresponds to axial loading on the flexures, which is a high-stiffness degree-of-

constraint at low displacements.  The axial stiffness thus drops dramatically at large displacements 

[1,2,10,23,30], due to the allowed motion shown by the dotted arrows.

2. Background

A review is presented of previous design solutions for the removal of underconstraint in flexure DP

bearings.  R.V. Jones suggested a multi-body lever linkage solution to this issue in 1956 [29], based on a 

suggestion by Plainevaux [34,35] of coupling the intermediate and final stage via a gearing system.  Smith 

[36] describes a modification of Jones’ design in which the sliding contacts are replaced with flexure joints, 

but retains an apparently assembled pin joint for linking the lever arm to ground.  All of these designs remove 

underconstraint, however they introduce several drawbacks which can negate some of the benefits of flexural 

bearings.  These designs utilize non-flexural bearings which introduce several acknowledged problems [29]

including requiring assembly, generating an asymmetric effect, and introducing friction.  The problems were 

solved via later UE designs, as described below, which utilize only flexural joints and thus regain the benefits 



of the flexural bearing in terms of friction and fine motion control.  This paper considers a usable UE design 

as one which will not negate the benefit of flexural bearings.  The Jones, Plainevaux and Smith designs will 

thus not be included in further comparison.

Many designs that do not meet the criteria of being usable UEs have been suggested to improve the 

performance of the DP linear bearing, and several (but by no means all) are noted here for illustrative 

purposes.  These include combining the DP with angled flexure bearings [24,26], pre-bending the flexures 

[20,26], linking the intermediate stages of symmetric bearing sets [25], angling 4-bar beams out-of plane [37], 

or introducing a lever arm held in place entirely with parallel blades [38]. While these designs address some 

of the symptoms of underconstraint, they either do not remove all of the underconstrained DOFs [20,24–26], 

or they introduce new DOFs to the final stage [37,38]. Thus these designs retain at least one more DOF 

beyond the single desired translational DOF, which is the underlying problem we seek to resolve. This paper 

focuses on comparing designs which fully remove the underconstraint in the flexural linear bearing, so the 

abovementioned papers will not be included in further comparison.

2.1.Double tilted-beam flexure bearing

The double tilted-beam flexure bearing design, shown in Fig. 3a, has been suggested as one means of 

removing underconstraint via angling the flexure beams, [1,3,24,26].  This design adjusts each of the beams 

off from vertical (y-direction) by an equal angle to create two instant centers, one below and one above the 

bearing.  The intermediate stage of this design is no longer underconstrained because each flexure bearing 

module possesses non-redundant instant center rotational DOFs.  In the case where multiple bearing elements 

are desired/allowed, this bearing provides the additional benefit that the underconstraint elimination in this 

mechanism is all done with the four existing flexures.  The multiple bearing requirement is due to the need to 

negate the second DOF intrinsic to the bearing design, as shown in Fig. 3 and explained below.



Fig. 3.  a) Double tilted-beam linear bearing shown on left with instant centers identified.  The two 
possible motions for the structure are shown in equivalent linkage models in b).  The solid arrows 
show the nominal translational motion where the final stage does not rotate. Note that the 
kinematic errors are not canceled in this translation.  The dotted arrows show the extra DOF of the 
structure where the final stage rotates without translating.

Such a design poses several disadvantages however, including design coupling, altered DOF and 

parasitic kinematics.  The performance of the main translational DOF is now coupled with the performance of 

the UE from an axiomatic design perspective [39] via angling of the beams.  The coupling of multiple 

functional requirements to the same design parameters (tilt angle) results in a reduced design space.  The main 

translational elastomechanics are altered by angling the beams, resulting in increased stiffness [1] due to the 

combined translation and rotation in the beams.  The outer set of flexures in Fig. 3a will be further loaded by 

the intermediate stage rotation, increasing stress buildup [3], and thus reducing total bearing range.  The final 

stage shows an extra DOF in the tilted-beam design as shown in the equivalent linkage model in Fig. 3b.  The 

final stage can either move along an arcuate path as shown by the solid arrows or rotate as shown by the 

dotted arrows.  This design returns to being a 1DOF translational bearing only if the rotation is constrained 

[1].  To do so requires multiple structures, such as using two of these bearings side-by-side or end-to-end.  

Full bearing performance thus requires at least approximately twice the footprint of a single bearing.  Finally, 

the parasitic kinematic errors are not canceled [1] in this design. The two bars in series do not carry out 

equivalent motions, shown in Fig. 3b by the solid arrows.  The first bar rotates, while the second translates.  

Thus the final stage follows an arcuate path whose radius is the separation between the two instant centers, 

and the stage motion is left with a cosine-like y-direction parasitic error motion at large displacement [1].
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2.2.Exact constraint folded flexure with external linkage

The exact constraint folded flexure bearing design, shown in Fig. 4a, has also been suggested as a 

means of removing underconstraint, [2,11,19,31,37,40,41].  This design is based on the assembled lever arm 

suggested by Jones [29], and utilizes an external linkage to tie the kinematics of the intermediate stage to the 

final stage.  The rigid linkage rotates around an instant center above the bearing, shown in the equivalent 

linkage model in Fig 4b.  The distance from this instant center to each of the stages sets the allowed ratio of 

motion between the stages.  This ratio is fixed at a 2:1 ratio to ensure that the intermediate stage translates half 

as far as the final stage, as shown by the solid arrows in Fig. 4b, thus removing the underconstrained DOF but 

not interfering with the kinematics of the main translational DOF.

Fig. 4.  a) Exact constraint folded flexure utilizing an external linkage.  The possible motion for the 
structure is shown in the equivalent linkage model in b).  The solid arrows show the nominal 
translational motion, which is equivalent to the DP flexure bearing alone.

The external linkage design possesses several drawbacks including degraded dynamics, asymmetry, 

and increased footprint.  The external linkage can significantly alter the dynamics of the main translational 

DOF via the asymmetric layout and the added inertia [6,17].  The higher dynamics are also impacted by this 

extra mass.  The asymmetric layout of the bearing increases its thermal sensitivity [6,17].  Finally, the 

inclusion of the large linkage roughly doubles the required bearing footprint.
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3. Nested Linkage Designs

3.1.Linear Bearing Design

The new design presented here draws upon the design of the external linkage exact constraint folded 

flexure described above.  The modification is intended to fix the main drawbacks of the external linkage 

design- dynamics, symmetry and footprint.  The instant center of the added linkage is placed along the plane

of symmetry of the structure, as shown in Fig. 5a, which passes through the middle of the device.  This

placement improves the dynamics and symmetry of the structure.  The linkage guiding flexures (labeled 2 in 

Fig. 5a) do not need to extend all the way to the instant center- instead both these flexures and the linkage 

itself can be designed to nest within the central dead-space in the double-parallelogram.  This reduces 

footprint and inertia for the linkage.  The linkage is shaped in a triangular fashion with hollowed center to 

maximize the stiffness of the body with the least additional mass.  It is attached to each of the stages with sets 

of blade flexures (labeled 1 in Fig. 5a) axially aligned to the final and intermediate stage DOF along the x-

axis.  These blade flexures are included symmetrically to avoid buckling, thermal sensitivity and dynamic 

issues.  The type 1 blade flexures may be replaced with wire flexures to avoid overconstraining the structure.

Fig. 5.  a) Exact constraint folded flexure design with an improved, nested linkage for UE.  The 
possible motion for the structure is shown in the equivalent linkage model in b).  The solid arrows 
show the nominal translational motion, which is equivalent to the DP flexure bearing alone.

The nested linkage must be able to access both stages and the ground in order to kinematically link the 

stages.  The point of contact of the linkage to each of the stages may be at any height, it does not need to be at 

the surface defined by the end of the four main flexures (labeled m in Fig. 5a).  By moving these points of 

contact closer to one another, the location of the instant center for the linkage is shifted.  The location of the 
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instant center sets the angle at which the type 2 flexures (labeled 2 in Fig. 5a) contact the linkage, and thus 

how stiff they are when resisting the translational DOF of the intermediate stage.  The type 2 flexures will 

need to displace roughly as much as the main flexures.  These type 2 flexures are typically thinner than the 

type m flexures in order to avoid significantly altering the main translational DOF, so they see lower stresses 

than the main type m flexures.  This means that the addition of the UE will not typically change the range of 

the overall flexure bearing.

3.2.Rotary Analog Design

The UE linkage concept is extensible to different flexure mechanisms that achieve other kinds of 

motions. A double nested rotational flexure analog to the translational version presented previously is shown 

in Fig. 6a.  This compact flexure topology can enable large rotational motion in a similar way to how the 

double parallelogram flexure bearing in Fig. 2 achieves pure translational motion. If the intermediate stage 

shown in Fig. 6a were grounded, the final stage could still rotate about the axis shown as a red dot with a 

circular arrow, but this axis of rotation would immediately begin to drift left or right depending on the 

direction the stage were rotated for finite deformations. To eliminate this unwanted parasitic error effect while 

dramatically increasing the mechanism’s rotational range without increasing its overall footprint, the 

intermediate stage shown in Fig. 6a should be free to rotate half the number of radians as the final stage while 

the labeled ground is held fixed as shown. The necessary lengths and orientations of the four flexure blades to 

maintain the location of the intended rotational axis over finite rotations (for when the intermediate stage 

rotates half the radians as the final stage) can be determined using the mathematics provided by Van Eijk [19]. 

The system retains an underconstrained DOF even after the flexure lengths are correctly chosen.  The 

underconstraint causes many of the same dynamic problems discussed previously for the translational analog 

mechanism in Fig. 2. This can be solved by inserting an analogous symmetric UE linkage similar to the one 

shown in Fig. 5. Whereas the UE linkage in Fig. 5 rotates to ensure that its mechanism’s intermediate stage 

translates half as much as its final stage, the UE linkage analog in Fig. 6b translates to ensure that its 

mechanism’s intermediate stage rotates half as much as the final stage. Note that as long as the two distances 

labeled h in Fig. 6b are equal, the mechanism’s intermediate stage will rotate ~d/2h radians as its final stage 

rotates ~d/h radians where d is the distance the UE linkage translates (Fig. 6c). The vertical flexure bearings 

only permit this linkage to translate horizontally as shown by the arrow in Fig. 6c.



Fig. 6.  Double nested rotary flexure a), similar flexure but with a UE linkage inserted b), the final 
stage is forced to rotate twice as many radians as the intermediate stage in the same direction c).

4. Comparison

The three linear bearing designs described above, i) tilted-beam, ii) external linkage, and iii) nested 

linkage, all eliminate the underconstraint in the DP flexure bearing.  Such UE designs increase the displaced 

axial stiffness (y-direction) of the final stage [1,2] and raise the resonance frequency associated with the 

underconstrained DOF.  The secondary effects of these designs differ, however, as shown in Table 1.  Table 1 

is included as a designer reference to summarize the general strengths and weaknesses of the three UE designs 

that have been discussed in detail in the previous sections.  This comparison is explicitly carried out 

independently of a particular design or situation and as such is intended as a qualitative guide for concept 

level design selection.

Table 1. Comparison of UE designs

Tilted-
Beam

External 
Linkage

Nested
Linkage

Symmetry + - +

Dynamics + - +

Range - + +

Footprint - - +

Kinematics - + +

Design Decoupling - + +

The three designs are standardized in this comparison such that they all equally provide a single linear 

DOF at the final stage, and utilize identical main bearing flexure geometry.  This is to ensure equality in the 

comparison.  The double tilted-beam design must be used in duplicate to do so, resulting in a larger footprint 

as described previously.  Symmetry is maintained and inertia is low for this design due to its simplicity.  

a) b) c)



These aid the dynamics via minimizing unwanted modes as well as keeping the bandwidth as high as 

possible.  The range is reduced and the design is coupled due to the beam angle as described above.  Finally, 

the main translational DOF will have parasitic kinematics as shown in Fig. 3b.  The external linkage design 

breaks the bearing symmetry, and raises the footprint. The increased mass combined with the asymmetric 

layout impact the dynamics. The range, kinematics, and design of the main DOF are effectively unaltered by 

the external linkage design.  The improved nested linkage design maintains symmetry, low inertia and 

footprint via a small hollow linkage nested within the DP.  The range, kinematics, and design of the main 

DOF are also effectively unaltered by the nested linkage design.  The nested linkage design has improved 

performance over the other two common UE designs.

5. Small Displacement Analysis

The equations required to calculate the linear, small displacement static and dynamic performance of 

the underconstrained DOF are described below.  A linear domain analysis of static and dynamic performance 

is utilized below to provide insight into the capability of the new UE nested linkage design to remove 

underconstraint.  The derivation and implications of the large displacement analysis lies outside the scope of 

this paper and so will be published separately.

5.1.Final Stage Motion

The linear stiffness, kf, of the final stage along the main x-axis translational DOF is derived through

energy analysis.  The energy stored via x-axis translation motion, Ekf, is calculated by summing the 

contributions of each of the flexures as shown in Eq. (1), where r1 and r2 are the lever arm for the type 1 and 2 

flexures, respectively, d is the separation between the linkage points to the stages, xf is the x-direction motion 

of the final stage, and θue is the rotation of the UE linkage around its instant center. The geometric variables 

are indicated in Fig. 5. E, I and L are the Young’s modulus, second moment of area, and length respectively 

of the main (m) flexures, type 1 flexures (1), and type 2 flexures (2).  The terms kjθ describe the j-type 

flexures’ (1 is type 1, 2 is type 2) clamped-free moment-to-rotation stiffness at the free end.  The terms kjt

describe the j-type flexures’ clamped-guided transverse force-to-displacement stiffness at the guided end.  The 

terms kjtτ describe the j-type flexures’ clamped-free moment-to-displacement stiffness at the free end.  The 

bodies are assumed to be rigid for this analysis, motions are assumed to occur in a 2:1 (final to intermediate



stage) ratio, all displacements are assumed to be small, all energy storage along DOC is considered to be 

negligible, and Euler stiffnesses are used for the beams.
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(1)

The stiffness is calculated by finding the derivative of the energy with respect to x-axis motion on the 

final stage, as shown in Eq. (2).
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(2)

The first term on the right hand side contains the contribution from the main flexural DP, labelled type 

m.  The second term describes the combined rotation/translation of the four type 1 flexures, while the third 

term describes the combined rotation/translation of the two type 2 flexures.  The term kfue captures the effect 

of the UE on the final stage DOF stiffness.

The resonance of the final stage, ωnf, is shown in Eq. (3), where mf is the mass of the final stage mi is 

the mass of the intermediate stage, and mue is the mass of the UE linkage.  The intermediate stage mass is 

scaled down via a 1:2 transmission ratio.  The UE linkage is modeled as a point mass halfway between the 

intermediate and final stage with a 3:4 transmission ratio.
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5.2. Intermediate Stage Motion

The stiffness, ki, for the intermediate stage x-axis motion (a DOF prior to inclusion of the UE linkage) 

requires a more complex derivation than that done for the final stage.  The inclusion of the UE linkage shifts 

the intermediate stage motion to occur along a DOC, where rigid body displacement does not follow the 

simple 2:1 ratio.  The flexures are deliberately ‘jammed’ in this scenario, producing much higher forces, so a

free-body-diagram based analysis is more effective than the energy method.

The analysis for the intermediate stage x-axis stiffness is carried out in two steps.  First, structural 

motions are related to the intermediate stage x-axis displacement, xi.  Two main motions are considered: the 

UE linkage rotation, θue, around the instant center formed by the type 2 flexures, and the UE linkage

translation, xue, along the x-axis.  Second, the intermediate stage stiffness is derived from these structural 

motions. The bodies are assumed to be rigid for this analysis, all displacements are assumed to be small, the 

effects of transverse/moment stiffnesses are considered to be negligible, and Euler stiffnesses are used for the 

beams.  The assumption of axial stiffness dominance over transverse/moment stiffnesses was later confirmed 

with a full analysis that showed this assumption generated <0.01% error.

The moment and force balance for the UE linkage were derived as shown in Eq. (4), where d2 is the y-

axis separation between the end of the type 2 flexures and the ends of the top type 1 flexures, and θ2 is the 

angle of the type 2 flexures off of vertical.  The moment balance was carried out around the instant center 

formed by the type 2 flexures.
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The subscripts are used to indicate the type 2 flexures (2) as well as to separate the type 1 flexures into 

two sets: the top set (11) located at distance d from the instant center, and the bottom set (12) located at 

distance 2d from the instant center, as shown in Fig. 5.  The two sets encounter different deformations in the 

assumed rigid body of the UE linkage, as will be explained in the rigid body correction section.  The terms kpa

describe the p-type flexures (11 is type 1 top set, 12 is type 1 bottom set, 2 is type 2 set) axial force-to-



displacement stiffness.  These terms are composed of the flexure axial stiffness in parallel with a rigid body 

relaxation stiffness, kpb, unique for each flexure set, to account for the failure of the rigid body assumption.

The force and moment balance equations in Eq. (5) are used to calculate θue and xue, as functions of xi.  

The UE coordinates are linear functions of the intermediate stage motion, so non-dimensional ratios αx and αθ

are used as shown in Eq. (5).
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The overall structural stiffness of the intermediate stage in the x-axis can now be determined through 

the known displacement relationships.  This is done via an x-axis force summation on the intermediate stage, 

which combines the main flexures with the type 11 flexures, where Fix is the load applied on the intermediate 

stage along the x-axis as shown in Eq. (6).
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The intermediate stage stiffness is extracted from the force summation and Eq. (5), as shown in Eq. (6).  

This term can be visualized as the main flexures in parallel with the only-UE stiffness, kiue, which is itself 

composed of two stiffnesses in parallel, each associated with a separate UE motion.  The first UE motion is as 

follows: if k11a≈k12a≡k1a and k1a/k2a>>1 then the type 1 flexures are essentially infinitely stiff along their axis 

and the UE linkage is thus only able to rotate around the center of stiffness of the type 12 flexure set.  The 

type 2 flexures are scaled via a [2sin(θ2)]
2 transmission due to their angle of θ2 off of vertical.  The described 

motion is captured in Eq. (6) via the k2a term.  The second UE motion is as follows: if k2a/k1a>>1 then the type 

2 flexures are essentially infinitely stiff along their axis and the UE linkage is thus only able to rotate around 

the instant center formed by the type 2 flexure set.  The type 11 and 12 flexure sets are in series, with the UE 



linkage acting as a lever with a 22 transmission for the 12 flexures.  The described motion is captured in Eq. 

(6) via the k11a and k12a terms.  

The resonance of the intermediate stage, ωni, is shown in Eq. (7).  This expression assumes that the 

final stage mass is locked in place for simplicity.  The UE linkage is again modeled as a point mass halfway 

between the intermediate and final stage whose displacement normalized to xi is (αx+3/2dαθ).  This 

transmission shifts from 1:2 if k2a/k1a<<1, to 3:10 if k2a/k1a>>1, but in general it lies midway between these 

values.
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5.3.Rigid Body Correction

The rigid body assumption proved to be incorrect when the intermediate stage motion stiffness was 

analyzed due to the hollow linkage shape and high DOC loading.  This section provides the modifications to 

the expression necessary to account for the rigid body deformation.  All of this is contained in the kpb terms, 

shown in Eq. (4).  The rigid body assumption of kpb→∞ was initially used, resulting in a predicted 

ki=6.70MN/m which closely matches FEA results (6.68MN/m) when the rigid bodies are set to have a

Young’s modulus that is 1010 times the flexure modulus.  This value is significantly above the measured and 

FEA values (≈5MN/m) as shown in Table 2.  The deformation of the bodies can clearly not be ignored as 

while the equations accurately predict ideal rigid body motion, they are off by 25% for the real system.



Fig. 7.  FEA of the nested UE linkage design undergoing loading along the former DOF of the 
intermediate stage.  A 1N load is applied in the x-axis on the intermediate stage (red arrow), while 
the final stage and grounds are held in place.  The UE linkage rigid body is warped by the loading, 
with the top horizontal beam in the linkage forming an ‘S’ shape, and both of the side beams 
bowing in the same direction.  The motion is amplified to clearly indicate the warping.

The dominant deformation was observed to be a warping of the triangular UE linkage, as shown via 

FEA in Fig. 7.  The horizontal bar of the UE linkage deforms in an S pattern.  For the remainder of the 

analysis, this beam will be split in half via the plane of symmetry shown in Fig. 5, and the half beam indicated 

with the b1 subscript.  Both the loading and the linkage are symmetric about the central plane, so the analysis 

needs only consider one side.  The angled bars of the UE linkage, referred to via the b2 subscript, deform via 

bowing.  The beams’ end-angle change due to loading, θb, at the beam intersection points, were found to be 

matched as is visible in Fig. 7, so θb can effectively be used to describe the warping of b1 and b2 that occurs 

as springs in parallel.

The type 1 and 2 axial forces can be related by a force and moment balance on the UE linkage, as 

shown in Eq. (8).  Only the axial forces are considered, as with the previous analyses.  The moment balance is 

carried out around the center of stiffness of the type 12 flexure set.  The directions for each of the forces are 

adjusted to produce positive magnitudes as only the relative scale of the values is of interest.  The resulting 

simple ratios of forces are also shown in Eq. (8), all linked back to F2a.  
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The UE linkage distortion is calculated via the application of the type 2 axial load, F2a.  The type 1 

flexure forces are interpreted as reaction forces on pinned joints which hold the UE linkage in place.  These

two pinned joints are located at the center of stiffness of the type 11 flexures, as well as at the center of 

stiffness of the type 12 flexures.  The type 2 flexure axial load produces rotation of the beam ends, captured in 

the rigid body force-to-rotation stiffness, kbθ, shown in (9). E, I, L, and h are the Young’s modulus, second 

moment of area, effective length, and bending direction thickness (in-plane) respectively of the horizontal 

rigid body beam (b1) and angled rigid body beam (b2).  
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The beam rotations occur together, so while their ends are fused to one another they warp at the same 

angle and thus the ends store no energy in resisting the warping.  The dominant mode is instead captured by 

treating the beams as pinned-pinned with a moment applied at their linked end.  The applied load is 

transformed to a moment via the lever arm, d2b, separating the contact point of the type 2 flexures from the 

intersection of the b1-b2 neutral planes.  The lever arm is calculated as the normal distance from a line at 

angle θ2 off the y-axis passing through the extreme corner of the UE linkage, back to the intersection of the 

b1-b2 neutral planes.  The effective lengths of the two beams are reduced by the end sections where the beams

overlap one-another.  The predicted warping stiffness, 270kN/rad, provides a close (<3%) match with FEA 

results of 280kN/rad, indicating that the model captures the dominant physics of the warping.

The rigid body warping is captured in the rigid body relaxation stiffnesses, kpb.  Such warping is not a 

concern for DOF motions, but has a noticeable effect on DOC motions, based on the scale of flexural 

stiffnesses and forces.  The rigid body relaxation stiffnesses are explained and defined for each flexure set 

below.

The neck area of the UE leading to each of the type 1 flexure sets undergoes deformation during 

loading.  This appears as a stiffness of about 40MN/m in series with the type 11 flexure (≈10MN/m axial 



stiffness).  The added stiffness covers the region from the end of the type 11 flexure to the intersection of the 

b1 beam with the central symmetry plane.  A 19MN/m stiffness is observed in series with the type 12 flexure

(≈10MN/m axial stiffness).  The added stiffness here covers the region from the end of the type 12 flexure to 

the intersection of the b2 beam with the central symmetry plane.  The kpb expressions combine the two 

dominant stiffnesses: the shear of the neck region and the UE linkage warping, as shown in Eq. (10), where 

Gn, An, and Ln are the shear modulus, cross sectional area and length, respectively, of the neck shear region.  

d11b and d12b are the lever arms that transform the rigid body warping into axial translation for the type 11 and 

type 12 flexures, respectively.
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The first term accounts for the shear in the neck region, which is similar for both flexure sets.  This 

region is typically fairly short, as it need only allow for the machining kerf width and UE rotation.  The shear 

stiffness term is divided by 2 as the loads paths from both flexures in the set overlap in the neck, resulting in

half the stiffness found by only considering one of the flexures in the set.  The second term is the warping 

stiffness from F2a to θb of the UE linkage body as described in Eq. (9) transformed from a rotational output to 

a translation along the flexure axis by a lever arm.  This arm can be related to existing geometry for the type 

11 flexure set, where d11b≈d2, however the lever arm for the type 12 flexure set has more design freedom and 

can be set to a wide range of values, including ≈0. F2a is replaced by an equivalent axial load function of F11a

or F12a, via Eq. (8).

Equation (10) predicts rigid body relaxation stiffnesses of 41 MN/m for the type 11 flexures and 18 

MN/m for the type 12 flexures, both of which are within 5% of FEA values, suggesting the model captures 

the dominant physics.  The warping stiffness is the dominant term and is approximately 10x lower than the 

shear stiffness.  This indicates that further improvement is mainly to be found in improving the warping 

mode.  A topological alteration like the placement of an ‘X’ cross brace in the center gap of the UE linkage 

would connect the centers of the b1 and b2 beams from opposite sides, centers which move in opposite 

directions during the warping.



The arms of the UE linkage undergo deformation along the axis of the type 2 flexures during loading.  

This appears as a stiffness of about 20MN/m in series with the type 2 flexure (≈6MN/m axial stiffness).  The 

added stiffness covers the region from the end of the type 2 flexure to the two pinned joints described for Eq. 

(9), which are considered the grounding points.  The expression for k2b combines three stiffnesses: end shear, 

truss stretching, and the UE linkage warping, as shown in Eq. (12).  The end shear stiffness, kb3t, is calculated 

as shown in Eq. (11), where F is a transverse load applied to the small end of a beam with shear modulus Gb3, 

whose length is Lb3.  The beam cross section, Ab3(x), is the product of a constant width, bb3, and a varying 

thickness which is a maximum at the base and decreases with distance, x, along the beam at slope cot(θ2) until 

reaching a minimum of hb30 at the free end of the beam.
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The end shear stiffness term mimics the shear of the triangular section where the type 2 flexure anchors 

to the UE linkage.  Shear was confirmed to be the dominant loading in this region via FEA.  The stiffness was 

found by integrating the transverse shear over a linearly increasing cross section, which extended about 

13mm, at which point beams b1 and b2 separate from one another and end the triangular segment.  The type 2 

axial load is applied at angle θ2 off of transverse, which is accounted for by the secant term in Eq. (12).

   

2 2 2 1

2 2

sec( ) sin( ) cos(2 )

tan( ) sec( )

2b b3t 2 b1a 2 b2a 2 b 2b

b1 b1 b2 b2
b1a b2a

2 2

k k k k k d

E A E A
k k

d d d d

  

 

   

 
 

� �

(12)

The second term in k2b is the truss stiffness.  This is derived from a model of the UE linkage where the 

b1 and b2 beams are treated as trusses with pinned ends at the joint locations described for Eq. (9).  The axial 

stiffnesses, kb1a and kb2a for the b1 and b2 beams respectively, far exceed each beam’s transverse and moment 

stiffness, so the truss model is effective.  The third term in k2b is the UE linkage warping stiffness.  The 

warping angle, θb, of the rigid body is transformed back to an axial translation via the previously defined lever 

arm d2b.



The net value of k2b is predicted to be about 19MN/m, within 5% of FEA values, suggesting the model 

captures the dominant physics.  The warping stiffness and the truss stiffness are nearly equivalent, suggesting 

that both modes would need to be improved in order to make significant improvements.  While the ‘X’ 

bracing might reduce the warping mode, this would provide little benefit for the truss mode.

The ratio of the kpb-and-flexure combined axial stiffness divided by the flexure-only axial stiffness can 

be considered the ‘DOC stiffness efficiency’ figure-of-merit for the rigid body deformation.  This ratio 

approaches unity via improvements in UE linkage design.  Both flexure types 1 and 2 operate with DOC 

stiffness efficiencies of about 75%.  Further rigidification of the UE linkage may raise this value, however 

relatively minor gain is to be had given the tradeoff of increasing mass.  The introduction of the UE linkage 

raises ki by 44dB (168x) from 40kN/m to 6.7MN/m, while the DOC stiffness efficiency draws this back down 

by about 2.4dB (0.75x) from 6.7MN/m to 5.1MN/m.  Best design principles thus suggest that there is little 

point in adding mass to the UE linkage in an attempt to raise DOC stiffness efficiency when significantly

greater returns may be found by simply directly raising the flexure’s DOC stiffness.  This could be done by 

increasing the axial stiffness of the type 1 and/or type 2 flexures.  The type 2 flexures compose the lowest 

stiffness component in the present design.  Increasing their axial stiffness would result in the largest 

proportional gains in intermediate stage stiffness when the sensitivity of Eq. (6) is considered with respect to 

each of the flexure types.

6. Experimental Setup

Meso-scale (30cm x 30cm) DP flexures with and without the nested UE linkage were monolithically 

fabricated from 1.27cm thick aluminum using abrasive waterjet cutting.  The nested UE linkage was intended 

to boost the natural frequency of the translational DOF of the intermediate stage by around 10x with only 

minimal (<10%) alterations to the main DOF static and dynamic performance.



Fig. 8.  Flexure DP with nested linkage, attached to optical table.  This general setup was used to 
capture the static and dynamic properties of the main DOF as well as the underconstrained DOF.

The flexure bearings were anchored to an optical table as shown in Fig. 8, and the static/dynamic 

performance of both the final and intermediate stage translational DOFs were measured.  Static tests were 

performed with weights for loading and Lion Precision capacitance probes for sensing.  Dynamic tests were 

performed with impulse loading using a small metal tapping probe and the same sensors sampling at 50khz.  

The Fourier transform of the impulse response was used to determine the frequency response of the bearing, 

assuming the bandwidth of the impulse was well above the bandwidth of interest.  This assumption is 

validated by the measurements shown in Fig. 9.  A second order decaying sinusoid was fit to the capacitance 

probe readings of the impulse response in order to determine the resonance frequency.  The final stage was 

anchored during the intermediate stage measurements.

7. Results

7.1.Small Displacement

The static and dynamic performance of both the main translational DOF and the intermediate stage 

translational DOF are shown in Table 2.  This was done in order to demonstrate the capability of the nested 

linkage UE to remove the underconstrained DOF in double parallel flexure bearings.  The DP flexure bearing 

as shown in Fig. 2 is compared to a DP bearing with the nested UE linkage as shown in Fig. 5.  Measurements 

are compared against FEA predictions and theoretical predictions from the equations described previously.  

The base was grounded and an x-axis force was applied to the side surface of the final stage for the final stage 

DOF analysis.  The base and the final stage were grounded and an x-axis force was applied to the side of the 

Ground

Final StageProbe

Load Point

Load
Intermediate 

Stage



intermediate stage for the intermediate stage DOF analysis, as shown in Fig. 7. Displacement was measured 

from the center of the stage.

Table 2. Static and Dynamic Performance of Bearing DOFs

DP DP with nested UE
Measured FEA Theory Measured FEA Theory Units

Final Stage DOF

kf 9.76±0.25 9.71 9.98 10.9±1.2 10.5 10.7 kN/m

ωnf 19.1±0.1 20.3 20.6 20.7±0.1 20.9 21.0 Hz

Intermed. Stage DOF

ki 38.3±0.3 38.8 39.9 5130±190 4890 5070 kN/m

ωni 60.4±0.3 67.9 65.8 650±3 648 732 Hz

Stiffness Ratio

ki/kf 3.92±0.11 4.00 4.00 471±55 466 474 --

Evidence of underconstraint removal is found in the static analysis via the UE-driven increase in the 

stiffness ratio ki/kf.  Relative stiffness can be used to identify DOF [6,10]. Table 2 indicates that the 

intermediate stage DOF has been moved from a DOF-scale stiffness ratio of ≈4 to a DOC scale stiffness ratio 

of about 470 [10]. The underconstrained DOF has been effectively removed from the system, and the nested 

linkage has thus performed as intended.  The main translational DOF shows minimal changes in both static 

(12%) and dynamic (8%) performance due to the addition of the nested linkage.  The dynamic change is 

partially cancelled as both the stiffness and inertia rise.  The intermediate stage DOF shows significant 

changes in both static (134x) and dynamic (11x) performance, also as desired.  The measurements confirm 

that the accuracy of both the FEA (max 4.7%, average -2%, standard deviation 2.4%) and the analytical 

model (max 4.2%, average 0.86%, standard deviation 2.5%) are sufficient for use as flexural geometry design 

tools.



Fig. 9.  The Bode gain plot for the unaugmented DP flexure is compared to that of the DP flexure 
with the nested linkage.  The intermediate stage resonance has been shifted from 60hz to 650hz, 
while the main stage resonance has been changed by only ≈5%.

The net effect of the nested UE is clearly seen in Fig. 9, where the Bode gain plots for the flexures with 

and without the UE are shown.  These response plots were generated via the Fourier transform of the impulse 

response data.  The low frequency gain for both setups was normalized to unity in order to make the charts 

directly comparable.  The intermediate stage would normally generate a problematic resonance only slightly 

above the main translational DOF resonance; however this has been shifted over 10x higher without 

significant impact to the dynamics of the main DOF.

7.2.Large Displacement

A second effect of underconstraint on DP bearings, as described in the introduction, is a reduction in 

large displacement y-axis stiffness.  This effect was analyzed via FEA as a redundant confirmation of the

capabilities of the nested UE design to remove underconstraint.

FEA analysis of the DP and DP with UE bearings were carried out for both force and displacement 

control on the final stage.  Theory and literature suggest there should be no difference between these two

control methods.  The bearing stiffness is commonly parameterized to a controlled displacement [1,25], 

however controlled force can be a more accurate model in certain conditions.  The high-bandwidth pullin 

effects on comb drives will likely occur before the main DOF controller has time to react and hold to a certain 

displacement, assuming closed loop control.  Both constraints were used in the FEA for comparative 

purposes, as shown in Fig. 10.  The displacement of the final stage, δ, was normalized by the thickness of the 
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type-m flexures hm, and represented by X=δ/hm.  The FEA was carried out to X≈20-30, as the simulations had 

difficulty in converging past this scale.

Fig. 10.  Logarithmic plot of axial stiffness vs nondimensional displacement, showing large 
displacement effects.  Both simple DP and DP with UE stage displacements were simulated using 
large displacement FEA with displacement (hollow points) and force (solid points) control on the 
final stage.  The DP results are compared to models presented in literature (LD DP Theory) [25].

The controlled force FEA results are shown as the solid marks, while the controlled displacement FEA 

results are shown as the hollow marks, in order to enable easy comparison of the values.  The force and 

displacement control diverge slightly at the large displacement, likely due to stage warping.  The DP bearing 

results are compared to the literature (LD DP) analysis.  The DP with UE shows a significantly higher dropoff 

scale (≈15 vs ≈1.7), clearly indicating the removal of the underconstraint in the DP bearing.

8. Conclusions

We have demonstrated an improved flexure linkage design for selectively removing the 

underconstraint in a DP linear flexural bearing.  Detailed models are provided for the small displacement 

behaviors as well as dynamics.  The new design reduces many of the problems associated with existing 

solutions, such as static/dynamic performance degradation, increased footprint, and design coupling, all of 

which limit the applicability of underconstraint elimination designs in flexural bearings.  The new nested UE 

linkage design will enable wider use of the UE concept as well as improving device performance where 

replacing existing UE designs.
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The modified linkage is shown to work within 5% error of the small displacement predictions 

generated by analytical models described in this paper.  The models and LDES figure-of-merit provides a new 

tool for designing large displacement bearings, and can be applied to other UE designs.  The linkage is 

successful at selectively boosting the stiffness (134x) and resonance (11x) of the translational DOF of the 

intermediate stage without significantly impacting (<12%) the main translational DOF of the final stage.  This 

design topology is readily implemented in existing structures owing to its compact structure and well modeled 

performance.
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